
Programming Whitout Code : 
An Approach & Environment

To Conditions-on-Data 
Programming

Ph. Larvet
Former Research Engineer, 

Alcatel-Lucent Bell Labs
June 2017



I Have A Dream
Specifications,
expressed in Natural Language

Generated code



The Present Approach

Spec of a complex system
to be validated

Mechanism for validation
or simulation

= A Program!



What Is A Program ?

� Within the context of OO programming, a 
Program is a set of interacting Objects

OBJECT1

Data

Methods
(operations)

OBJECT2

Data

Methods
(operations)

OBJECT4

Data

Methods
(operations)

OBJECT3

Data

Methods
(operations)



What is an Object ?

� An Object is a code structure that
encapsulates data and methods that work
on them

OBJECT2

Data

Methods

variables, information
owned by the Object

operations that process
object’s data



Methods Contain Statements

� Statements (instructions) can be divided in 
four main groups:
� Accessors = to get data from other objects
� Calculations = to compute new values of variables 

& data
� Tests = to organize the internal logic of the 

method (if… then… else; do… loop; while…; 
repeat... until; etc.)

� Generators of events = to call methods on other
objects



The Bricks Of A Method

� => A, T, C, G are fundamental bricks to build
a method

� Do these letters remind you something?

� (Let’s open a small parenthesis)



A Protein Is Made Of Bricks

Sample : amino-acids sequence in human insulin



Final Bricks Are A,T,C,G

� Each amino-acid (Gly, Val, Ala, Glu, Pro, 
etc.) is a set of A,C,T,G



A,T,C,G : The Bricks of Life



A,C,T,G To Build Programs

� As a Protein is a Program, a Program can be
built as a set of A,C,T,G
(Let’s close now the small parenthesis)

� From a detailed point of view, A,C,T,G can be
seen as equalities (equations) or « conditions 
on data » (COD)



An Accessor Is An Equality

OBJECT1

Data

Methods
(operations)

OBJECT2

Data

Methods
(operations)

myData = OBJECT2.get(Data); 



A Calculation Is An Equality

OBJECT1

Data

Methods
(operations)

OBJECT2

Data

Methods
(operations)

g = 0;
delta = (b*b) – (4*a*c);
i++;
query = "SELECT * 

FROM customers
WHERE cID = 256 ";



A Generator Is An Equality

� An event Generator inside a method of OBJ1 
is a call of a method on OBJ2

OBJ1

Data

Methods
(operations)

OBJ2

Data

Methods
(operations)

result = OBJECT2.funct2(param); 



A Test Is A Condition On Data

OBJECT1

Data

Methods
(operations)

if (var1 == val01 && 
var2 > val02) {

g = 0;
i++;

} 

can be expressed as :

var1 = val01 AND var2 > val02
=> g = 0 AND i++



A Test Is A Condition On Data (2)

OBJECT1

Data

Methods
(operations)

while (content < demand) 
{ 

//operation
j++;
out = display(TAB[j]);

} 

can be expressed as :

content < demand
=> j++ AND out = display(TAB[j])

and we need
a mechanism
to express 
or implement
the boucle 



First Summary

� We propose to simplify the writing of programs by 
expressing only
� equalities
� conditions on data (COD)

� So, we don’t write any more complex algorithms in 
terms of « code », but only CODs

� And we need a mechanism to implement the 
dynamics => HOW TO DO THIS ?



A COD Is A Rule

� A condition on data, expressed as 
� var1 = val01 => g = 0 AND i++

� can be seen as a « production rule » in a 
rule-based system (expert system) :
� PREMISE : var1 = val01
� CONCLUSION : g = 0 AND i = i +1



CODs Are Distributed Rules

� Main differences between a rule-based
system and the COD approach :
� in our COD approach, CODs express conditions 

on equalities (i.e. equations) instead of predicates
or « logical production rules »

� rules (i.e. CODs) are not stored in a unique rule
database but are distributed into all objects
because a COD belongs to a given object

� idem, facts (i.e. Data) are not stored in a unique 
fact database but are distributed into objects, 
because each object stores its own data



The COD Environment

OBJECT1

Equalities

CODs

OBJECT2

Equalities

CODs

OBJECT4

Equalities

CODs

OBJECT3

Equalities

CODs

INFERENCE
ENGINE



Inside The Inference Engine
� 'on balaie les "faits" de TabN
� 'et on cherche dans les "règles" des objets si certaines prémisses peuvent décl. des concl.
� 'on répète le traitement jusqu'à ce qu'aucune nouvelle concl ne soit décl.
�

� nouv_conclusion = False
�

� 'on balaie les RLists des objets pour chercher une éventuelle règle à déclencher
� For i = 0 To nbObj
� 'on balaie la RList de chaque objet
� For j = 0 To RList(i).ListCount - 1
� reg$ = RList(i).List(j)
�

� prem$ = gauche(reg$, "=>") 'extraction de la prémisse
� If InStr(prem$, " AND ") > 0 Then
� sprem1$ = gauche(prem$, " AND ")
� sprem2$ = droite(prem$, " AND ")
� If prem_verifiee(sprem1$) = True And prem_verifiee(sprem2$) = True Then
� decl_concl i, j
� nouv_conclusion = True
� End If
�

� Else
� If prem_verifiee(prem$) = True Then
� decl_concl i, j
� nouv_conclusion = True
� End If
� End If
�

� Next
� Next
�

� If nouv_conclusion = True Then moteur



Building An Example

Filling
electro-valve

Emptying
electro-valve

Filling tank

Storage tank

Reactor

Heating
regulator

Demo !



Object Model of the Example

FTANK

FVALVE

is emptied by

CONTROLsurveys

REACTOR

fills

starts

ALARM

switches on

PARAMETERS

knows

HEATER

TIMER

knows

EVALVE

STANK

fills

VALVE

TANK

knows

is emptied by

is heated by

knowssets


